START First steps Deutsch Guide : Normal gravity formulae

Page contents

International normal gravity formula 1967 Formula of Somigliana for the normal gravity at the level ellipsoid h=0 Height dependence for GRS80 and WGS84 Gravity benchmark at the geodetic laboratory of the HTW Dresden In the library
The normal gravity at a point of given ellipsoidal latitude and height for the level ellipsoids GRS67,GRS80 and is computed, optionally including an .

START First steps Deutsch

The normal gravity field is a coarse approximation of the true gravity field of the Earth. It serves as a simple easy-to-compute model. In geodesy and geophysics we use rotationally symmetric normal gravity fields, where a surface of equal gravity potential (known as equipotential or level surface) coincides with a geodetic reference ellipsoid, e.g. GRS80 or

The value of the gravity acceleration in the normal gravity field is called normal gravity γ . It depends on the latitude φ and the ellipsoidal height h above the level ellipsoid. It decreases from the poles to the equator by about 0.052 m/s² and in vertical direction by about 0.003 m/s² per kilometre of altitude. The following normal gravity formulae are implemented:

START First steps Deutsch International normal gravity formula 1967

γo(φ ) = γe· (1+5.3024· 10-3· sin(φ )² -5.8· 10-6· sin(2φ )²)
γ(φ ,h) = γo(φ )· (1−2·(1+f+m−2·f·sin(2φ )²)·(h/a)+3·(h/a)²)

with γe = 9.780318 m/s²; a = 6378160 m; f = 1.0/298.247167427;
m = 0.0034498014343

START First steps Deutsch Formula of Somigliana for the normal gravity at the level ellipsoid h=0

γo(φ ) =γe· (1+k· sin(φ )²) (1-e²· sin(φ )²)
with values for

GRS80WGS84unit
γe9.780326771534892857939.780325335903891718546m/s²
k0.00193185135326067636070.0019318526524582735209-
0.006694380022903415749570.006694379990141316996137-

START First steps Deutsch Height dependence for GRS80 and WGS84

γ(φ ,h) = γo(φ )· (1-(k1-k2·sin(φ )²)·h+k3·h²)
with values for k1=3.15704· 10-7;   k2=2.10269· 10-9;   k3=7.37452· 10-14
and h in the unit metre.

START First steps Deutsch Gravity benchmark at the geodetic laboratory of the HTW Dresden

We compute the normal gravity for the gravity benchmark at the geodetic laboratory of the University of Applied Sciences, Dresden (Germany). The ellipsoidal latitude equals 51.03361°. The height is 114 m above the reference surface DHHN92. The height of the reference surface DHHN92 above the ellipsoid WGS84 equals 35 m. This results in a ellipsoidal height above WGS84 of about 149 m. We compute a value of γ(φ ,h)= 9.811161 m/s². By the way, an absolute gravity value measured at the geodetic laboratory is obtained as 9.811193 m/s² (rounded).

We further compute the vertical gradient of the normal gravity at this benchmark. For this purpose we use the utility with a height deviation of exactly 1 m. The deviation of gravity at a height deviation of 1 m equals the value of the vertical gradient (sign is always minus). The latitude is held fixed. In this case it is arbitrary if you specify the height deviation as a maximum or standard deviation. The value of 3.085·10-6s-2 is obtained.

and Compute
Did you know? In geodesy an alternative unit of gravity is used: 1 Gal = 0.01 m/s² ;   1 m/s² = 100 Gal

START First steps Deutsch







START First steps Deutsch In the library

Link Author(s)Title Year Type Pages
MByte
PDF: open accessVermeer MPhysical Geodesy2016Educ343
0.1
PDF: open accessDeakin REEccentricity of the normal ellipsoid2014Essy4
0.1
PDF: open accessSchneider S, Scherer ADas Schwerefeld der Erde2013Over50
0.1
PDF: open accessBouman J, Bosch W, Goebel G, Müller H, Sánchez L, Schmidt M, Sebera JDas Schwerefeld der Erde: Messen, Darstellen und Auswerten2010Essy6
0.1
PDF: open accessFörste ChDas Schwerefeld der Erde und seine Vermessung mit Satelliten2010Essy12
0.1